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SUMMARY

The two-dimensional shallow water model is a hyperbolic system of equations considered well suited to
simulate unsteady phenomena related to some surface wave propagation. The development of numerical
schemes to correctly solve that system of equations finds naturally an initial step in two-dimensional
scalar equation, homogeneous or with source terms. We shall first provide a complete formulation of
the second-order finite volume scheme for this equation, paying special attention to the reduction of the
method to first order as a particular case.

The explicit first and second order in space upwind finite volume schemes are analysed to provide
an understanding of the stability constraints, making emphasis in the numerical conservation and in
the preservation of the positivity property of the solution when necessary in the presence of source
terms. The time step requirements for stability are defined at the cell edges, related with the traditional
Courant–Friedrichs–Lewy (CFL) condition. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical models to solve differential equations of applicability in hydraulic engineering have
become a common tool and the interest in developing better, more accurate and robust methods
has increased. In recent years, one of the topics of research in this field has been driven by the
necessity to use the numerical methods in practical situations of growing complexity. Water flowing
steadily or unsteadily over uneven, irregular and rough bed surfaces that can be flooded or emerge
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depending on the flow conditions and can, at the same time be the transport basis of a solute is a
challenge for modellers and several contributions have been reported [1–8]. The question arises of
what are the features to be sought in the numerical model for such kind of applications. Accuracy,
conservation and numerical stability are central properties of a numerical method and must be
carefully considered in first place trying to understand and to quantify as much as possible how
they interfere with each other.

Begnudelli and Sanders [7] modelled shallow water flow and scalar transport over arbitrary
topography involving wetting/drying fronts and reported that scalar predictions cannot be accu-
rately predicted as undershoots and overshoots were generated even in cases with initial constant
values of scalar concentration, requiring water depth and a scalar concentration tolerance to avoid
an excessive mass error. In many applications, the stability region is not analysed taking into
account both friction and bed level term influences and it is only admitted that, in certain situa-
tions, the time step size must be reduced to achieve better quality solutions.

In Murillo et al. [9] an upwind finite volume conservative model was presented to solve shallow
water flow involving scalar transport in the presence of complex bottom variations using Roe’s
approximate solver to compute fluxes. In Murillo et al. [8], the numerical model was extended
to include wetting/drying advance in complex geometries upholding conservation properties over
the water mass and solute mass keeping accurately bounded the initial solute concentration values.
The model was based in the redefinition of the eigenvectors of the system of equations to model
correctly wetting fronts and required a redefinition of numerical fluxes along flood recession to
prevent from excessive reduction of the time step according to the stability region. In this work,
a MLG-Wierse limited cell gradient methods (MUSCL)-based extension to second order in space
and time is presented and carefully studied.

The correct extension to second-order approach requires special attention in the discretization
of the source terms. When applying the MUSCL or MUSCL-Hancock method it is necessary to
properly discretize the source term. This can be done using a flux correction to ensure hydrostatic
balance in still water conditions [5, 6]. In this paper a novel and elegant procedure to accurately and
efficiently model second-order approach is derived constructing the numerical fluxes in a compact
form where equilibrium is defined in a natural way.

The second-order reconstruction will be structured so that it is possible to identify the new
stability region generated by the presence of source terms in the equations and those cases where
the numerical scheme must be reduced to first-order approach. Also the accurate definition of
the numerical fluxes in the presence of source terms ensuring equilibrium in steady state cases is
formulated.

The explicit first and second order in space upwind finite volume schemes are analysed to provide
an understanding of the stability constraints, making emphasis in the numerical conservation and
in the preservation of the positivity property of the solution when necessary in the presence of
source terms. The time step requirements for stability are defined at the cell edges, related with
the traditional Courant–Friedrichs–Lewy (CFL) condition [10]. This will be first discussed for a
scalar two-dimensional conservation equation with source terms. Two examples concerning the
linear advection equation and a modification of the inviscid Burgers’ equation will be used to test
the performance of the numerical techniques. Then, the finite volume schemes will be formulated
for systems of equations with source terms and the analysis of the stability, conservation and
positivity constraints will be extended. The particular formulation in the case of the shallow water
equations will be presented and several test cases of steady and unsteady shallow water flow with
exact solution will be used to illustrate the relative performance of the schemes in each case.
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2. SCALAR EQUATION WITH SOURCE TERMS

This is a conservation law expressing that a function u varies and is transported according to both
the distribution of a flux function f and to a source term s, in the form:

�u(x, y)

�t
+ ∇f= s(u, x, y), f= ( fx , fy) (1)

At this point, the source term is assumed to follow s = ∇s, where s is a suitable vector, and the
advection, or transport, velocity k is

k= df
du

(2)

To introduce the upwind finite volume scheme, (1) is integrated in a volume �:

�
�t

∫
�
u(x, y) d� +

∫
�

∇(f − s) d�= 0 (3)

In the (x, y) plane, the volumes are actually surfaces, d� denotes the contour line and n is the
unit outward normal vector to �. If Gauss’s theorem is applied to the second integral in (3):

�
�t

∫
�
u(x, y) d� +

∮
��

(f − s)n dl = 0 (4)

If the domain is subdivided in cells �i in a mesh fixed in time, (4) can also be applied to each
cell. Calling ui (x, y) the discrete value of the function u at cell i and assuming that each cell is
surrounded by a set of edges defined by the edge vertices ek , as shown in Figure 1, (4) can be
rewritten in a first approximation considering the fluxes affecting cell i as

�
�t

∫
�i

ui (x, y) d� +
NE∑
k=1

∫ ek+1

ek
(f − s) jnk dl = 0 (5)

provided that the following condition applies over the cell edges [11]:
NE∑
k=1

nklk = 0 (6)

Figure 1. Cell parameters.
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and where f j and s j are the value of the functions f and s, respectively, at the neighbour cell
j connected to cell i through the edge k, nk is the outward unit normal vector to the cell edge
k, lk is the corresponding edge length and NE is the number of edges in the cell. Condition (6)
is necessary to ensure that, when a uniform flux crosses the cell domain, the cell state does not
change in time (steady state).

The flux value inside cell i , fi (x, y), can be added and subtracted from Equation (5) so that

�
�t

∫
�i

ui (x, y) d� +
NE∑
k=1

∫ ek+1

ek
�(f − s)knk dl +

NE∑
k=1

∫ ek+1

ek
(f − s)ink dl = 0 (7)

where �fk = f j (x, y)−fi (x, y) and �sk = s j (x, y)−si (x, y). Depending on the spatial representation
of u(x, y), (7) will lead to different schemes.

2.1. Explicit first-order upwind scheme for the scalar equation

The simplest option is to represent u and s using piecewise constant values assigned to the centroid
of the cells, (x0, y0), at a given time t , as Figure 2 shows. This is a first-order approximation in
space [12].

The cell functions are thus constant, u(x, y) = uni,0, s(x, y, t) = sni,0 and the first integral in (7)
can be approximated by the Euler approximation:

�
�t

∫
�i

u(x, y) d� ∼= un+1
i − uni

�t
Ai (8)

where superscripts n and n + 1 represent the solution at times t and t + �t , respectively, �t being
the discrete time step and Ai the area of cell �i . On the other hand, assuming piecewise constant
values of the variables, the third integral of (7), using (6), vanishes leading to

un+1
i − uni

�t
Ai +

NE∑
k=1

(�(f − s)knk)lk = 0 (9)

Using (2), the linearized advection velocity (̃kn)k can be defined [13] as

�̃k = (̃kn)k = (f j,0 − fi,0)
(u j,0 − ui,0)

nk (10)

Figure 2. Piecewise constant representation of the variable u.
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Following the upwind philosophy, which discriminates the sense of propagation according to the
sign of the advection velocity, the flux difference is split [13] as a sum of waves travelling in and
out of a given cell

�fknk = �f−k nk + �f+k nk = �̃
−
k �uk + �̃

+
k �uk (11)

with �̃
± = ( �̃ ± |̃�|)/2.

The edge source term ��k = (�sn)k is also split into in-going and out-going contributions

��k = (��)−k + (��)+k (12)

where

(��)±k = 1
2 (1 ± sgn( �̃

±
k ))(��)k (13)

The updating scheme for cell i includes only the in-going contribution of flux and source term to
that cell

un+1
i = uni −

NE∑
k=1

(�(f − s)n)−k
lk
Ai

�t (14)

Equation (14) is the later so-called unified discretization. This can also be expressed in a compact
form as

un+1
i = uni −

NE∑
k=1

�∗
i,k�uk, �∗

i,k = �∗
k

(Ai/ lk)
�t (15)

with

�∗
k = �̃

−
k �k, �k = 1 −

(
��−

�̃
−
�u

)
k

= 1 −
(

��−

� f −

)
k

(16)

Note that �∗
i,k is a dimensionless quantity that plays the role of a local CFL number generalized

to cases involving source terms. The coefficient �k expresses the discrete ratio of source term to
flux differences. They will be key parameters in our discussion of stability conditions. It is worth
noting here that definitions analogous to (16) are possible in cases in which the source term is not
written as the divergence of a vector field.

2.1.1. Influence of �k on the stability condition. In the homogeneous case �k = 1. Then, numerical
stability for scheme (15) is ensured if [9]

−1��∗
i,k�0 (17)

and, at the same time, the following condition on the monotonicity of the solution holds:

umin�un+1
i,0 �umax (18)

where umax
k = max{unj,0, uni,0}k and umin

k = min{unj,0, uni,0}k .
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The aim of the following analysis is to find the criterion that preserves (18) in presence of
source terms. For that reason, first it is necessary to enforce (17) by requiring that the redefined
eigenvalue is negative

�̃
∗
k�0 (19)

and as, by definition, �̃
−
k <0 the new coefficient must be positive:

�k�0 (20)

Given a grid mesh and flow conditions, (17) is a limit on the value of the time step to meet the
stability criterion. For the sake of simplicity, assume that all the u j,0 values are uniform at the
surrounding cells to cell i , but ui,0>u j,0. Condition (6) is the key to bound the size of the allowable
incoming contributions to a cell [8] as∣∣∣∣∑

k
�∗
klk�uk�t

∣∣∣∣�max
k

{|�∗
k |lk}�u0�t = (|�∗|l)kmax�u0�t (21)

where �u0 = u j,0 − ui,0 = �uk . As the updating flux crossing every edge k between cells i and j
must be limited by the quantity that ensures that the final state at both cells is included between
the initial values �u0Amin, the following is also true:

(|�∗|l)kmax�u0�t��u0Amin (22)

where Amin = min{Ai , A j } and Ai and A j are the areas of cells i and j , respectively. In a more
general case, �u0 = maxk{�uk}.

Under these conditions (17) is reformulated as

�t =CFL�tmax, CFL�1

and �tmax given by the condition expressed in (22). It can also be formulated as a cell time step
in terms of the edge-time steps as follows:

�tmax = min{�tk}k=1,Nedge, �tk = Amin,k

|�∗
k |lk

, �k�0 (23)

If �k is set equal to one in (23), the basic CFL stability condition for the homogeneous case
is automatically recovered. Otherwise, (23) states a more general rule. At this point it is worth
remarking the relevance of the source term discretization when analysing the stability region
defined by (23). If a unified formulation has been used so that in equilibrium

(�(f − s)n)−k = 0 (24)

This means that �k = 0, �∗
k = 0 and the numerical scheme becomes unconditionally stable at steady

state. Figure 3 represents the stability region of the scheme as a function of �. The point � = 1 on
the curve corresponds to the homogeneous case (no source term) and �t (�∗

k) is the maximum time
step compatible with stability in this case or CFL condition [10]. The rest of the curve corresponds
to cases with source terms. In Figure 3 the sign relations among fluxes and source terms are
displayed. The dashed zone (0��k�1) is the set of situations in which it could be possible to use
larger time steps than the limit of the homogeneous stability: both fluxes and source terms have
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Figure 3. Stability region. First-order scheme in the presence of source terms.

the same sign so the net contributions are reduced. In the case �k>1, stability requires a reduction
of the time step size over that dictated by the CFL condition, as fluxes and source terms have an
opposite sign, so the net contribution increases.

On the other hand, it is possible to find situations where �k<0. In that case the source term
contribution dominates over the flux difference, |��−|k>|� f −|k and a different line of reasoning
must be followed. Depending on the requirements over the solution different strategies can be
tackled. If preservation of the sign of the variable is the main objective,

un+1
i � 0 when uni , u

n
j=1,2,3�0

un+1
i � 0 when uni , u

n
j=1,2,3�0

(25)

the contributions between cells are also limited by the initial values stored in the cells so that the
stability condition is determined also by the initial condition:

�tk = �
Amin,k

|�∗
k |lk

, � = min{|ui,0|, |u j,0|, |�uk |}
|�uk | , �k<0 (26)

If u is a gradually varied function, the coefficient � is 1 and the time step limit in (26) reduces
to (23). Otherwise, 0��<1 and an actual reduction in the time step is required. In the special
case �= 0 the local time step �tk would be zero according to (26). This is absurd and must be
interpreted as condition of no information crossing that cell edge. In practice, a threshold value
equal to the machine accuracy is defined for the minimum value of � before imposing the condition
that no information crosses the edge.

In cases in which the source term is not written as the divergence of a vector field, the above
discussion is still valid if, at the discrete level, condition (24) can still be formulated. This is the
case in the problems addressed in this work.

Finally, it is also possible to re-express (15) as

un+1
i = uni −

NE∑
k=1

�̃
−
k �dk

lk
Ai

�t, �dk = �uk − ��k
�− = �uk�k (27)
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that in steady state reduces to �dk = 0. This formulation will be useful when analysing the second
order in space approach.

2.2. Explicit second order in space upwind scheme for the scalar equation

The spatial discrete representation of the functions can be improved using information of the
neighbour cells. The reconstruction functions can be defined as piecewise linear representations
in the cells so that the scheme becomes a second order in space approximation [12]. As the cell
representation function must be unique to preserve conservation, the techniques described in this
section can only be applied to triangular cells because, as will be shown, the number of edges
in which stability conditions are required cannot exceed the number of points used to define the
representation function itself [11].

The piecewise linear reconstruction of a scalar variable u, over an element with centroid at
(x0, y0) is expressed as

ui (x, y)= ui (x0, y0) + r(x, y)Lu,i = ui,0 + r(x, y)Lu,i (28)

where r is the position vector from the centroid, and L is the cell slope. The same applies to s.
Different forms to define the cell slope will be described later. Figure 4 shows the position vectors
of the middle points of edge k.

As u has a constant slope in this case, the first integral in (7) can be evaluated as follows:

�
�t

∫
�i

u d� ≈ 1

�t

(
ut+�t
i − 1

NE

NE∑
k=1

(ui,0 + ri,ekLu,i )

)
= un+1

i − uni
�t

(29)

with uni = ui,0 and ri,ek the position vector of vertex ek .
For the second integral in (7), �f is evaluated at the mid-edge (I, J ) so that, taking advantage

of the linear cell distribution:

NE∑
k=1

∫ ek+1

ek
(kn)k(u j (x, y) − ui (x, y)) dl =

NE∑
k=1

�̃JI,k(uJ − uI )klk (30)

with a linearized advection velocity �̃JI,k = (̃kn)JI,k defined as

�̃JI,k = (fJ − fI )k
(uJ − uI )k

nk (31)

Figure 4. Linear representation by cells.
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and

uI,k = ui,0 + ri,kLu,i , uJ,k = u j,0 + r j,kLu, j

ri,k = 1
2 (ri,ek + ri,ek+1), r j,k = 1

2 (r j,ek + r j,ek+1)
(32)

where r j,k is the position vector of the mid-point edge from the centroid of cell j . In this case,
due to the cell variation, the term f in the third integral in (7) does not vanish:

NE∑
k=1

∫ ek+1

ek
fink dl =

NE∑
k=1

fI,knklk (33)

with fI,k = (̃kn)uI,k in the case of a first-order homogeneous flux function. For a more general
case, (33) can be rewritten using property (6) as

NE∑
k=1

fI,knklk − fi,0
NE∑
k=1

nklk =
NE∑
k=1

(fI,k − fi,0)nklk =
NE∑
k=1

(uI,k − ui,0)̃�Ii,klk (34)

Now �s(x, y) in (7) is approximated as

NE∑
k=1

∫ ek+1

ek
�snk dl =

NE∑
k=1

(�s)JI,knklk (35)

with �sJI,k = sJ,k − sI,k . The term s in the third integral does not vanish either

NE∑
k=1

∫ ek+1

ek
sink dl =

NE∑
k=1
sI,knklk (36)

but can also be rewritten using (6) as

NE∑
k=1
sI,knklk − si,0

NE∑
k=1

nklk =
NE∑
k=1

(sI,k − si,0)nklk =
NE∑
k=1

�sIi,knklk (37)

leading to the following updating scheme:

un+1
i = uni −

NE∑
k=1

(�fnk − �snk)
−
JI,k

lk
Ai

�t −
NE∑
k=1

(�fnk − �snk)Ii,k
lk
Ai

�t (38)

that defines the second-order upwind finite volume method for scalar equations with source terms
and unified discretization.

The updating formula in (38) can also be expressed in a compact form as

un+1
i = uni −

NE∑
k=1

�∗
JI,k�uJI,k −

NE∑
k=1

�∗
Ii,k�uIi,k (39)

This is a second-order formulation that reduces to (15) as a simpler case and where

�∗
JI,k = �∗

JI,k

(Ai/ lk)
�t, �∗

Ii,k = �∗
Ii,k

(Ai/ lk)
�t (40)
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with the definitions

�∗
JI,k = �̃

−
JI,k�JI,k, �∗

Ii,k = �̃Ii,k�Ii,k (41)

that contains information on the relative importance of source terms and flux differences and
separates at the same time the upwind contributions through the cell edges from the central
contributions due to non-uniform cell representation.

2.2.1. Influence of �k on the stability condition. To ensure monotonicity over u, as expressed
in (18), when (39) is used both �∗

JI,k and �∗
Ii,k must be bounded

−1��∗
JI,k�0, −1��∗

Ii,k�0 (42)

and, therefore, the following conditions over the � coefficients expressing the influence of the
source terms, appear

�JI,k�0, �Ii,k�0 (43)

As the cell representation function of u changes in second order, the criterion over the time step
for stability is affected and must be revisited. The following condition is necessary to limit the
new contributions:

|�uIi,k + �uJI,k |�|�uk | (44)

with �uJI,k = (uJ,k − uI,k) and �uIi,k = ri,kLu,i .
For that purpose, the values of the function u at the cell edge, as computed from (32), have to

be bounded as follows:

umin
k �uJ,k�umax

k , umin
k �uI,k�umax

k (45)

this is controlled by the extra restrictions placed upon the u values by the slope limiters (see
Appendix A) and leads, at the same time, to

|�uJI,k | = |uJ,k − uI,k |�|�uk |
|�uIi,k | = |ri,kLu,i |�|�uk |

(46)

The cell contributions in (39) can be expressed as

NE∑
k=1

(�∗
JI,k�uJI,k + �∗

Ii,k�uIi,k)lk�t (47)

If (�uJI,k�uIi,k)�0 the modulus of these contributions can be limited by∣∣∣∣ NE∑
k=1

�∗
k,sup(�uJI,k + �uIi,k)lk

∣∣∣∣�t (48)

with �∗
k,sup = max{|�∗

JI,k |, |�∗
Ii,k |, |�∗

k |}. Considering (44), (48) in turn is bounded by∣∣∣∣ NE∑
k=1

�∗
k,sup(�uk)lk

∣∣∣∣�t (49)
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If (�uJI,k�uIi,k)�0 (47) can be directly limited by (49), and now∣∣∣∣ NE∑
k=1

�∗
k,sup(�uk)lk

∣∣∣∣�t� 3max
k

{�∗
k,suplk}|�u0|�t = 3�∗

k,maxlk |�u0|�t (50)

where �u0 = maxk{�uk}. At this point, the cell contributions are limited as in (22) leading to the
new stability condition for second-order approach in space that expressed per edges as in (23) is

�t =CFL�tmax, CFL� 1
3

�tmax =min{�tk}k=1,Nedge, �tk = Amin,k

�∗
k,maxlk

, �JI,k�0, �Ii,k�0 (51)

This condition guarantees strict positivity and is more restrictive than the stability criterion for the
first-order explicit scheme. In the particular case �JI,k = 1 and �Ii,k = 1, the homogeneous stability
condition is obtained.

Considering steady state as before, the unified discretization requires

(�fnk − �snk)
−
JI,k = 0, (�fnk − �snk)Ii,k = 0 (52)

for all k, which is only feasible if second order is reduced to first order. This can be more clearly
seen using the notation of (27) in the second-order formulation (39)

un+1
i = uni −

NE∑
k=1

�̃
−
JI,k�dJI,k

lk
Ai

�t −
NE∑
k=1

�̃Ii,k�dIi,k
lk
Ai

�t (53)

with

�dJI,k = �uJI,k�JI,k, �dIi,k = �uIi,k�Ii,k (54)

It is not difficult to see that the stability condition formulated as in (51) requires a limitation over
the variable d as follows:

|�dIi,k + �dJI,k |�|�dk | (55)

In the second-order representation, a unique interpolation function must be defined for d in each
cell in order to preserve the conservative character of the numerical scheme:

di (x, y) = di,0 + r(x, y)Ld,i (56)

The construction of (56) requires expressing a modified source term �̂ also as a piecewise linear
function:

�̂i (x, y)= �̂i,0 + r(x, y)L�̂,i , �̂i,0 =
(

�

�̃

)
i,k

(57)

so that di,0 = ui,0 − �̂i,0. For the sake of simplicity, in this work the source terms will be expressed
assuming first-order approximation, setting L�̂,i = 0, so in each cell Lu,i =Ld,i .

With this modification the quantities �dJI,k = (dJ,k − dI,k) and �dIi,k = ri,kLd,i can be correctly
defined and the function d at the cell edges can be bounded to satisfy (55) as follows:

dmin
k �dJ,k�dmax

k , dmin
k �dI,k�dmax

k (58)
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where dmax
k = max{dnj,0, dni,0}k and dmin

k = min{dnj,0, dni,0}k , and it is possible to achieve equilibrium
in steady-state cases by requiring

�dJI,k = 0, �dIi,k = 0 (59)

for all k, over the single variable d . This is equivalent to (52) but much simpler and efficient and
also implies that the second-order scheme reduces to first order automatically (Ld = 0).

The new formulation in terms of the d variable is useful and efficient when dealing with the
second-order scheme in presence of source terms. However, it must be stressed that the behaviour
of the conserved variable u must be always controlled so that, for all k, the following is never
allowed:

|�uJI,k |>|�uk |, uI,k = dI,k + �̂I,k, uJ,k = dJ,k + �̂J,k (60)

If (60) happens, the numerical scheme must be reduced to first order, otherwise condition (58)
as applied to variable u would be violated. At the same time, it may happen that �k<0. In this
case the source term dominates over the numerical flux. Considering that condition (60) must be
avoided and that the definition of � becomes of relevance in these cases, the numerical scheme
must be also reduced to first order when 0��<1.

2.3. Explicit second order in time and space scheme for the scalar equation

The second order in space approach in (39) or (53) may produce stable but oscillatory solutions
even in simple homogeneous cases [14]. The numerical solution can be improved by extending the
numerical scheme to second order also in time. For that reason the MUSCL-Hancock, or MHM,
approach was proposed [15, 16]. This method can be formulated as based on two steps. In the first
step the solution must be reconstructed using the Li gradient vectors (as in (28) or (32)) and then
intermediate values are re-calculated at a half time step at cell edges as

un+1/2
I,k = unI,k −

NE∑
k=1

(�fnk − �snk)nIi,k
lk
Ai

�t

2
(61)

which is equivalent to redefining the interpolation function in each cell. The intermediate values
(61) must ensure monotonicity and positivity as previously defined and must be reduced to first
order when �k<0, as stated in the preceding section. The updated variable is constructed as

un+1
i = uni −

NE∑
k=1

(�fnk − �snk)
n+1/2,−
JI,k

lk
Ai

�t −
NE∑
k=1

(�fnk − �snk)
n+1/2
Ii,k

lk
Ai

�t (62)

where �fn+1/2
JI,k = fn+1/2

J,k − fn+1/2
I,k and �fn+1/2

Ii,k = fn+1/2
I,k − fni,k , with an upwind part (first term) and

a central part (second term) that reduces again the time step to (51).

2.4. Application to the linear scalar equation

This first test case, taken from Batten et al. [17], is run using uniform triangular elements generated
by dividing square elements along the top-left to bottom-right diagonal Figure 5(a) that will be
referred as type M1 and by dividing square elements along the top-left to bottom-right diagonal
and the bottom-left to top-right (Figure 5(b)) that will be referred as type M2. The square domain
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Figure 5. M1 (left) and M2 (right) triangular grids.

Figure 6. Numerical results in first order using M1 (a) and M2 (b) with l = 0.0125.

Table I. Order of convergence in M1.

l = 0.025 l = 0.0125 l = 0.00625 l = 0.003125

log(L1)/ log(l), first order 0.66 0.69 0.72 0.75
log(L1)/ log(l), MLG 1.26 1.33 1.39 1.45
log(L1)/ log(l), MLG-Wierse 1.28 1.34 1.39 1.41

is defined by 0�x�1 and 0�y�1. A constant diagonal velocity k= (1, 1)T is used to advect an
initial condition defined by the double sin function,

u = sin(2�x) sin(2�y) (63)

and a periodic boundary condition is imposed to ensure that the initial solution and the solution
after every second are equal, as the periodic wave returns to its initial position. A constant value
of CFL= 1

3 is used in all cases. Figure 6(a) and (b) shows the result for first-order approach in
M1 and M2, respectively, with l = 0.0125, showing that M2 meshes provide less accurate results.

The order of accuracy was estimated from the rate of convergence of L1 error for the sine function
when the cell edge l varies from 0.025 to 0.003125 on both M1 and M2 meshes. Table I shows the
results when using M1 meshes and the second order in space and time approach. As defined in
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Figure 7. Second-order schemes on M1 mesh with l = 0.0125: (a) MLG interpolation technique
for second order in space; (b) MLG-Wierse interpolation techniques for second order in space; (c)
MLG interpolation technique for second order in space and time; and (d) MLG-Wierse interpolation

technique for second order in space and time.

Appendix A, both MLG and MLG-Wierse techniques provide similar order of accuracy. Figure 7(a)
and (b) displays the results when using the MLG and the MLG-Wierse interpolation techniques,
respectively, for second order in space approach showing how oscillations in the solution appear,
as expected. When second order in time and space is used the oscillations are eliminated for both
MLG and MLG-Wierse interpolation techniques as Figure 7(c) and (d) displays, respectively.

Table II shows the results when using M2 type mesh comparing the first order and the second
order in space and time approaches. Both MLG and MLG-Wierse techniques provide similar order
of accuracy, being the MLG-Wierse slightly bigger, which decreases as l decreases.

Figure 8(a) and (b) displays the results when using the MLG and the MLG-Wierse interpolation
techniques, respectively, for second order in space approach showing how oscillations in the
solution appear. When second order in time and space is applied the MLG-Wierse technique
proves to eliminate these oscillations efficiently as Figure 8(d) displays, but when using the MLG
limiter spurious oscillations remain as Figure 8(c) displays.
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Table II. Order of convergence in M2.

l = 0.025 l = 0.0125 l = 0.00625 l = 0.003125

log(L1)/ log(l), first order 0.40 0.78 0.80 0.71
log(L1)/ log(l), MLG 1.01 0.99 0.93 0.85
log(L1)/ log(l), MLG-Wierse 1.04 1.03 1.03 0.90

Figure 8. M2 mesh with l = 0.0125: (a) MLG interpolation technique for second order in space;
(b) MLG-Wierse interpolation techniques for second order in space; (c) MLG interpolation
technique for second order in space and time; and (d) MLG-Wierse interpolation technique

for second order in space and time.

2.5. Application to the Burgers’ equation with source terms
In this test case the inviscid two-dimensional Burgers’ equation has been modified by adding a
source term function

�u
�t

+ �
�x

(
1

2
u2
)

+ �
�y

(
1

2
u2
)

= −u

(
�z
�x

+ �z
�y

)
(64)
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where z = z(x, y). The function z in our test is defined by

z(x, y)= sin2
(
(x − y)

�

4

)
(65)

and the boundary conditions are given by

u(x, y, t) = cos2
(
(x − y)

�

4

)
(66)

so that in steady state the solution is

z(x, y) + u(x, y)= d = 0 (67)

The simulation is performed in the squared domain M2 with l = 0.0125 defined in Section 1.4,
from the initial condition

u(x, y, t = 0)= 1 (68)

From the numerical point of view, the linearized local advection velocity is

�̃k = k̃knk = ( ũ, ũ )knk = ũk(nx + ny)k (69)

with ũk = 1
2 (ui,0 + u j,0)k . Even though an analytical s cannot be identified, in order to ensure a

correct discrete balance in steady state, the source terms are discretized as follows:

��̃k = �snk = −ũk�z(nx + ny) (70)

so that �̃
∗
k and �̂i are in this case

�̃
∗
k = �̃

−
k

(
1 + �z

�u

)
k
, �̂i,0 = zi,0 (71)

and variable d can be constructed as

di,0 = ui,0 + zi,0 (72)

Figure 9. Contour plot of the numerical solution: (a) for first order; (b) second order interpolating over d;
and (c) second order interpolating over u.
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Figure 10. Burger’s equation test case. Time evolution of the maximum value of � using first order, second
order over d and second order over u.

Figure 9(a) shows a contour plot of the steady-state solution using first-order approximation
and Figure 9(b) shows the steady-state solution when using second-order approximation (MLG
algorithm) over the variable d at t = 3. In both cases the L1 error is nil. When second order is
applied and the interpolated variable is u, numerical perturbations appear in the solution and the
steady-state solution cannot be reached, Figure 9(c).

Figure 10 shows the evolution of the maximum value of �k in each time step for first-order
approximation, second-order approximation over d and second-order approximation over u, show-
ing that no convergence can be reached in the latter case.

3. SYSTEMS OF CONSERVATION LAWS WITH SOURCE TERMS

The numerical methods are extended in this chapter to solve hyperbolic non-linear systems of
equations with source terms, of the form:

�U
�t

+ �F(U)

�x
+ �G(U)

�y
=S(U, x, y) (73)

It will be first assumed that the source term S can be expressed as

S(U) = �S1
�x

+ �S2
�y

(74)

so that, calling E= (F,G)T and T= (S1,S2)T, (73) becomes

�U
�t

+ ∇(E(U) − T(U))= 0 (75)

The mathematical properties of the hyperbolic system of equations include the existence of a
Jacobian matrix, Jn, of the normal flux (E · n) defined as

Jn = �(E · n)

�U
= �(F)

�U
nx + �(G)

�U
ny (76)
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From its eigenvectors, two matrices P and P−1 can be constructed with the property that they
diagonalize the Jacobian Jn,

Jn =PKP−1 (77)

where K is a diagonal matrix with eigenvalues in the main diagonal.
The equivalent to (5) for the system is

�
�t

∫
�i

U(x, y) d� +
NE∑
k=1

∫ ek+1

ek
(E j − T j )nk dl = 0 (78)

where j subindex labels the surrounding cells to cell i , as in the scalar case. Adding and subtracting
both the contour integrals of Ei (x, y) and Ti (x, y) on the left- and right-hand side:

�
�t

∫
�i

U(x, y) d� +
NE∑
k=1

∫ ek+1

ek
(�E − �T)knk dl +

NE∑
k=1

∫ ek+1

ek
(Ei − Ti )nk dl = 0 (79)

3.1. Explicit first-order upwind scheme

In first order the vector quantities U,E and T are uniform per cell. In particular, the first integral
in (79) can be approximated by

�
�t

∫
�
U(x, y) d�= �Ui

�t
Ai ∼= Un+1

i − Un
i

�t
Ai (80)

where Un
i =Ui,0. In the second integral of (79)

NE∑
k=1

∫ ek+1

ek
�E(x, y)knk dl =

NE∑
k=1

(�Eknklk)n (81)

with �Ek =E(U j,0)−E(Ui,0) =E j−Ei . Due to the non-linear character of the flux E, the definition
of an approximated flux Jacobian, J̃n,k [13] allows for a local linearization and is exploited here.

Matrices P̃−1and P̃ can be built so that they diagonalize the approximate Jacobian matrix J̃n,k

J̃n,k = (̃PK̃P̃−1)k, P̃k = [̃e1, . . . , ẽN�]k (82)

and K̃ is the diagonal eigenvalues matrix. From the approximate Jacobian [13]
J̃n,k̃emk = ( �̃̃e)mk , m = 1, . . . , N� (83)

where N� is the number of eigenvalues, �̃
m
. The problem is reduced to a one-dimensional Riemann

problem projected onto the direction n at each cell edge [11]. Following a flux difference procedure,
the difference in vector U across the grid edge is projected onto the matrix eigenvectors basis

�Uk =U j,0 − Ui,0 =
N�∑
m=1

(�̃e)mk (84)

with �mk = �m(U j,0,Ui,0). The contributions in (81) are written as

NE∑
k=1

J̃n,k�Uklk =
NE∑
k=1

N�∑
m=1

( �̃
m
�m ẽm)klk (85)
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Since all the variables defined at the cell are uniform, the term �T in the second integral in (79)
is approximated by

NE∑
k=1

�Tknklk (86)

with �Tk =T j,0 −Ti,0. The normal source difference (�Tn)k can also be expressed in function of
the eigenvalues and eigenvectors of J̃n,k , using the approximate matrix P̃k [13] in order to reach
a unified formulation:

�Tknk =
N�∑
m=1

(	 ẽ)mk lk, bk = P̃−1(�Tn)k (87)

with bk =[	1, . . . , 	m]Tk . In order to discriminate the sense of advection linked to the sign of the

different eigenvalues, two matrices K̃
±
are defined:

K̃
± = (K̃± |K̃|)/2 (88)

The flux difference across each edge k is split into contributions directed in the sense of the normal
vector (out going or positive waves) and contributions directed against the sense of the normal
vector (in going or negative waves). Note that this is always relative to the chosen normal direction
and that, as the normal vector is defined pointing outward to a cell, the contributions exchange
their character as we move from one cell to the neighbour cell:

�(E · n)k = P̃kK̃
−
P̃−1
k �Uk + P̃kK̃

+
P̃−1
k �Uk (89)

For the updating algorithm, as defined for a given cell i , only the in-going contributions generated
at the edges are of interest, as in the scalar case. The contour integral of the numerical normal
flux is equivalent to the sum of the in-going waves:

NE∑
k=1

J̃n,k�Uklk ∼=
NE∑
k=1

N�∑
m=1

( �̃
−m

�m ẽm)klk (90)

where �− = 1
2 (� − |�|).

In order to enforce equilibrium in steady-state cases the normal source difference (�Tn)k can
also be split in two kinds of waves:

�Tknk = (�Tn)−k︸ ︷︷ ︸
in going

+ (�Tn)+k︸ ︷︷ ︸
out going

(91)

with the same philosophy as before and where

�T−
k nk =

N�∑
m=1

(	 ẽ)m−
k lk (92)

with 	m− = 1
2 (1−sign( �̃

m
))	m . The third integral on the left-hand side of (79), assuming piecewise

constant values per cell, vanishes:

NE∑
k=1

∫ ek+1

ek
(Ei,0 − Ti,0)nk dl = (Ei,0 − Ti,0)

NE∑
k=1

nklk = 0 (93)
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and the first-order upwind scheme gets the form:

Un+1
i =Un

i −
NE∑
k=1

N�∑
m=1

(( �̃
−
� − 	−)̃e)mk lk

�t

Ai
(94)

This is a compact form with the focus on the waves generated at the cell edges, made of both the
normal flux difference and the normal source term, and governed by the sign of the eigenvalues
of the normal flux Jacobian. This formulation is closely related to the best-known numerical flux
formulation for finite volume schemes but is more convenient for our purposes in the present work.

As was done in the scalar case, the numerical scheme in (94) can be rewritten as

Un+1
i =Un

i −
NE∑
k=1

N�∑
m=1

(�∗�U)mk , �m,∗
k = �m,∗

k

(Ai/ lk)
�t (95)

with

�̃
m,∗
k = �̃

m,−
k �mk , �mk = 1 −

(
	−

�̃�
−
)m

k
(96)

where the ratio 	/(�̃�) expresses the influence of the source terms over that of the flux differences.
In absence of source terms, the numerical scheme (94) or (95) is stable provided that

−1��mi,k�0, �mk = �̃
m
k

(Ai/ lk)
�t, m = 1, . . . , N� (97)

and the following condition over the conserved variables applies:

Umin
s,k �Un+1

s,i �Umax
s,k , U= (U1, . . . ,Us, . . . ,Unc)

T (98)

where Umax
s,k = max{Us,i,0,Us, j,0}k and Umin

s,k = min{Us,i,0,Us, j,0}k .
Monotonicity in the conserved variables in presence of source terms requires that for all m

−1��m,∗
i,k �0 (99)

which means that

�m,∗
i,k �0, �mi,k�0 (100)

Under these assumptions the numerical stability when �mi,k�0 for all m, is provided by the

intersection of the stability regions defined for each celerity �̃
m,∗
k

�t =CFL�tmax, CFL�1

�tmax =min{�tk}k=1,Nedge, �tk = Amin,k

maxm {|�m,∗
k |}lk , �mi,k�0, m = 1, . . . , N�

(101)

In the particular case of �mi,k = 1 for all m, (101) expresses the stability condition without source
terms (CFL condition).
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Equilibrium in steady-state cases is ensured if the discretization of the source term has been
constructed enforcing

( �̃
−
� − 	−)mk = 0, m = 1, . . . , N� (102)

which is equivalent to �m,∗
k = 0, leading to an unconditionally stable scheme in this particular case.

To extend the formulation in (28) from scalar to systems, Equation (95) can also be expressed

Un+1
i =Un

i −
NE∑
k=1

N�∑
m=1

( �̃
−
�D)mk lk

�t

Ai
, �Dm

k = �mk �Um
k (103)

The stability region for (103) with source terms is enlarged if 0��mk �1 for all m, as in this
particular case |�Dm

k |�|�Um
k |. Equilibrium is achieved when all �Dm

k = 0, condition that can be
automatically derived from (103).

On the other hand, as seen in the scalar case, when �mk <0 the source terms dominate over the flux
differences. If (101) is still desired, the definition of � has to be based on the specific necessities
of the physical problem. A direct extension of (26) is not possible, as it is not feasible to define a
�mk coefficient if �mk <0 for all m, since there is no correspondence between the m-waves and the
s-variables. In the special case trying to preserve the sign over the solution in the s component,
expressed as

Un+1
s,i � 0, Un

s,i ,U
n
s, j=1,2,3�0

Un+1
s,i � 0, Un

s,i ,U
n
s, j=1,2,3�0

(104)

the time step in the stability region must be computed following:

�tk = �
Amin,k

maxm{|�∗,m
k |}lk , � = mini, j {|Us,i |, |Us, j |, |�Us |}

|�Us | (105)

where 0���1. If the conserved variable is gradually varied, the coefficient � is 1 and the time step
in (105) reduces to (101). In the particular case �= 0, no flux information can cross the edge.

3.2. Second order in space upwind scheme for systems

The spatial accuracy of the scheme can be increased by using piecewise linear instead of piecewise
constant representations of the different conserved variables at the cells. As the linear reconstruction
is conservative, the first integral in (83) can still be approximated by

�
�t

∫
�
U(x, y) d�= �Ui

�t
Ai ∼= Un+1

i − Un
i

�t
Ai (106)

whereUn
i =Ui,0, the value at the cell centroid. The flux difference contour integral can be expressed

in terms of the jump of the variable at the cell edge:

NE∑
k=1

∫ ek+1

ek
�E(x, y)knk dl =

NE∑
k=1

�EJI,knklk (107)
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where �EJI,k =E(UJ,k) − E(UI,k) =EJ,k − EI,k , with the same interpretation as in the scalar
case (33). Following (91):

NE∑
k=1

�E(x, y)JI,knklk ∼=
NE∑
k=1

N�∑
m=1

( �̃
−m

�m ẽm)JI,klk (108)

In the third integral on the left-hand side of (83):

NE∑
k=1

∫ ek+1

ek
Ei (x, y)nk dl =

NE∑
k=1

EI,knklk (109)

and does not vanish in general. In order to get a final compact form for the scheme as a sum of
waves directed along the eigenvectors directions, a flux decomposition is required in (109). It may
happen that the property

Enk = J̃n,kUk (110)

does not hold in general. Hence, the following transformation based on (7) is proposed:

NE∑
k=1

EI,knklk − Ei,0

NE∑
k=1

nklk + Ei,0

NE∑
k=1

nklk =
NE∑
k=1

(EI,k − Ei,0)nklk =
NE∑
k=1

�EIi,knklk (111)

so that an eigenvalue decomposition is possible:

NE∑
k=1

�EIi,knklk ∼=
NE∑
k=1

N�∑
m=1

( �̃
m
�m ẽm)Ii,klk (112)

The normal source difference in the second term of (83) is projected onto the eigenvectors of J̃JI,k

NE∑
k=1

�TJI,knklk =
NE∑
k=1

N�∑
m=1

(	−̃e)mJI,klk (113)

with �TJI,k =TJ,k − TI,k , and the source term in the last integral in (83) is approximated by

NE∑
k=1

∫ ek+1

ek
Ti (x, y)nk dl =

NE∑
k=1

TI,knklk (114)

that using (7), can be written as

NE∑
k=1

TI,knklk − Ti,0

NE∑
k=1

nklk + Ti,0

NE∑
k=1

nklk =
NE∑
k=1

(TI,k − Ti,0)nklk =
NE∑
k=1

�TIi,knklk (115)

which, projecting again onto the eigenvectors of J̃n,I i,k , yields:

NE∑
k=1

N�∑
m=1

(	 ẽ)mIi,klk (116)

The updating second-order scheme for the system with source terms is

Un+1
i =Un

i −
NE∑
k=1

N�∑
m=1

(( �̃
−
� − 	−)̃e)mJI,klk

�t

Ai
−

NE∑
k=1

N�∑
m=1

(( �̃� − 	)̃e)mIi,klk
�t

Ai
(117)
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As in the case of the first-order upwind scheme, an effort has been made to formulate the cell-
updating algorithm as a sum of waves generated at the cell edges by the joint contribution of
normal flux differences and normal source terms. In the second-order method (117) these waves
are of two kinds, those generated by the jump across the edge and those generated by the jump
between the edge and the cell centre values. This is different from the most usual formulation
based on numerical fluxes and, as before, will be better suited to our further analysis.

At this point, (117) can be expressed as

Un+1
i =Un

i −
NE∑
k=1

N�∑
m=1

(�∗�U)mJI,k −
NE∑
k=1

N�∑
m=1

(�∗�U)mIi,k (118)

where

�mJI,k = �m,∗
JI,k

(Ai/ lk)
�t, �mIi,k = �m,∗

Ii,k

(Ai/ lk)
�t (119)

with

�̃
∗
JI,k = �̃

−
JI,k�JI,k, �JI,k = 1 −

(
	−

�̃�
−
)
JI,k

, �̃
∗
Ii,k = �̃

−
Ii,k�Ii,k, �Ii,k = 1 −

(
	−

�̃�
−
)
Ii,k

(120)

To ensure the monotonicity of the conserved variables in (118), both �m,∗
JI,k and �m,∗

Ii,k must be limited
as

−1��m,∗
JI,k�0, −1��m,∗

Ii,k �0 (121)

and therefore

�JI,k�0, �Ii,k�0 (122)

The numerical instabilities are avoided if for the m components of �Uk

|�Um
Ii,k + �Um

JI,k |�|�Um
k | (123)

and as each �Um
k is a combination of the different Us components, (123) is fulfilled if

|�Us,I i,k + �Us,JI,k |�|�Us,k |, s = 1, . . . , Nc (124)

For that reason the values of the function Us at the middle-edge point, computed as in (28), have
to be bounded as follows:

Umin
s,k �Us,J,k�Umax

s,k , Umin
s,k �Us,I,k�Umax

s,k (125)

Under these assumptions the stability region is defined under

�t =CFL�tmax, CFL� 1
3

�tmax =min{�tk}k=1,Nedge, �tk = Amin,k

maxm{�m,∗
k,max}lk

, m = 1, . . . , N�, �mJI,k�0, �mIi,k�0
(126)

with �m,∗
k,max = max{|�m,∗

JI,k |, |�m,∗
Ii,k |, |�m,∗

k |}.
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Now, for equilibrium in steady state it is necessary that

( �̃
−
� − 	−)mJI,k = 0, ( �̃� − 	)mIi,k = 0, m = 1, . . . , N� (127)

for all k, which is only feasible if the local discretization follows the conditions stated for first
order. As in the scalar case, condition (127) can only be reached if a careful interpolation procedure
is made. If (118) is expressed as

Un+1
i =Un

i −
NE∑
k=1

N�∑
m = 1

( �̃
−
�D)mJI,klk

�t

Ai
−

NE∑
k=1

N�∑
m=1

( �̃
−
�D)mIi,klk

�t

Ai
(128)

with

�Dm
JI,k = �mJI,k�U

m
JI,k, �Dm

Ii,k = �mIi,k�U
m
Ii,k (129)

condition (126) is ensured and enlarges the stability region of the homogeneous case if

0��mJI,k�1, 0��mIi,k�1 (130)

for all m.
In the case where �mJI,k�0, assuming �JI,k�0 and �Ii,k�0, the numerical instabilities are

avoided if

|�Dm
Ii,k + �Dm

JI,k |�|�Dm
k | (131)

which is equivalent to

|�Dm
s,Ii,k + �Dm

s,JI,k |�|�Dm
s,k |, s = 1, . . . , Nc (132)

and the values at the cell edge have to be bounded as follows:

Dmin
s,k �Ds,J,k�Dmax

s,k , Dmin
s,k �Ds,I,k�Dmax

s,k (133)

where Dmin
s,k = min{Ds, j,0, Ds,i,0}k , Dmax

s,k = max{Ds, j,0, Ds,i,0}k . This is only feasible if �Dm
JI,k

and �Dm
Ii,k can be written as

�Dm
JI,k =Dm

J,k − Dm
I,k, �Dm

Ii,k =Dm
I,k − Dm

i,k (134)

with the appropriate relations among the conserved variables. Now in equilibrium

�Dm
JI,k = 0, �Dm

Ii,k = 0 (135)

and the numerical scheme reduces automatically to first-order approximation, leading to �mJI,k = 0
and �mIi,k = 0, which also provides an unconditional scheme in that case. It is important to remark
that the extension of the scalar case to systems requires the identification of independent Dm

functions in order to ensure (135) in steady state.
As in the scalar case, the behaviour of the conserved variables must be always controlled in

order to avoid situations where

|�Us,JI,k |>|�Us,k | (136)

In that case it is necessary to reduce the numerical scheme to first-order approach. In those cases
where �mk < 0 the analysis performed for the second order in space approach assuming �mJI,k�0 and
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�mIi,k�0 is not valid. The requirements to preserve the sign in the solution in the s component (98)
in combination with (136) are ensured if the numerical scheme is reduced to first order when
0��<1.

3.3. Explicit second-order in time and space scheme for systems

The MUSCL-Hancock scheme extended to systems of equations can also be formulated based on
two steps. In the first step the solution must be reconstructed using the Li gradient vectors and
then intermediate values are re-calculated at a half time step at cell edges as

Un+1/2
I,k =Un

I,k −
NE∑
k=1

(�Enk − �Tnk)nIi,k
lk
Ai

�t

2
(137)

which is equivalent to redefining the interpolation function in each cell. The intermediate values
(137) must ensure monotonicity and positivity as previously defined and must be reduced to first
order when �mk <0, as stated in the preceding section. The updated variable is constructed as

Un+1
i =Un

i −
NE∑
k=1

(�Enk − �Tnk)
n+1/2,−
JI,k

lk
Ai

�t −
NE∑
k=1

(�Enk − �Tnk)
n+1/2
Ii,k

lk
Ai

�t (138)

where �En+1/2
JI,k =En+1/2

J,k − En+1/2
I,k and �En+1/2

Ii,k =En+1/2
I,k − En

i,k , with an upwind part (first term)
and a central part (second term).

4. APPLICATION TO THE SHALLOW WATER EQUATIONS

4.1. Two-dimensional mathematical model of the shallow water equations

In this work the schemes are used to solve the following system of equations:

U= (h, qx , qy)
T

F=
(
qx ,

q2x
h

+ gh2

2
,
qxqy
h

)T

, G=
(
qy,

qxqy
h

,
q2y
h

+ gh2

2

)T

S= (0, gh(S0x − S f x ), gh(S0y − S f y))
T

(139)

where h is the water depth, g is the acceleration of the gravity, qx = uh, qy = vh the unit discharge
components, with (u, v) the depth-averaged components of the velocity vector u along the x and
y, coordinates, respectively.

4.2. Application of the explicit upwind numerical scheme

As stated in Section 3, the mathematical properties of the hyperbolic system of equations include
the existence of a Jacobian matrix. In the case of (139) it is convenient to work with the normal
flux Jacobian matrix Jn. Upwind schemes were first developed for the Euler equations [16]. In
those equations the numerical flux is first-order homogeneous and (110) holds. This is not the case
for the Saint-Venant equations [18], and an approximate normal flux Jacobian matrix J̃n,k has to
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be defined. The eigenvalues of J̃n,k are used. For more details on the normal flux Jacobian and its
properties see [19–21].

The vectors S1 and S2 in (74) for the discretization of the source term are defined as

S1 = (0, gh(−z + H), 0, 0)T, S2 = (0, 0, gh(−z + H), 0)T (140)

where H is the total energy head:

H = h + z + |u|2
2g

(141)

The normal source difference is

�Tn= �(S1, S2)Tn=

⎛⎜⎜⎜⎜⎜⎝
0

gh(−�z + �H)nx

gh(−�z + �H)ny

0

⎞⎟⎟⎟⎟⎟⎠ (142)

and the spatial bed and energy level variations acting as source terms are:

−∇z = −
(

�z
�x

,
�z
�y

)
= (S0x , S0y), ∇H =

(
�H
�x

,
�H
�y

)
= (−S f x , −S f y) (143)

Following (87) the coefficients 	m are defined as

	1 =− c̃

2
(�z + dnS f ), 	1 =−	3, 	2 = 	4 = 0 (144)

having used the diagonalization matrices

P̃=

⎛⎜⎜⎝
1 0 1

ũ + c̃nx −c̃ny ũ − c̃nx

ṽ + c̃ny c̃nx ṽ − c̃ny

⎞⎟⎟⎠ , P̃−1 = 1

2̃c

⎛⎜⎜⎝
−ũ · n + c nx ny

2( ũny − ṽnx ) −2ny 2nx

ũ · n + c −nx −ny

⎞⎟⎟⎠ (145)

where c̃=
√
gh̃ and h̃ = 1

2 (hi + h j ).
The difference �Hk is computed as

�Hk =−dnS f,k =−dn
n2ũn|̃u|
h̃4/3

(146)

where dn is the distance between cell centroids projected onto the n direction. The empirical
Manning friction formula has been applied [22, 23] and cannot be transformed into a linear space
variation over the cell. For that reason, when second order is imposed H is considered uniform in
the cell and terms like �HIi,k are nil. Also, for the sake of simplicity, the interpolation vector Lz
will be set nil in those cases.
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4.3. Conservation properties and equilibrium at steady state

The unified discretization of the source terms is successfully constructed when it ensures an exact
balance in first-order approximation [24]. For that reason, the discretization of the fluxes and
source terms proposed in Section 4.1 is here analysed. Steady state in the first-order scheme is
expressed as

J̃n,k�Uk = �T̃knk (147)

According to the form of the matrices involved, the first equation in (147) gives

�(hu)knx + �(hv)kny = �(q j,0 − qi,0)nk = �qknk = 0 (148)

which means that the normal discharge is constant at the edge. The second line in (147) yields

�h( c̃ 2nx − ũ · nũ ) + �qx ( ũnx + ũ · n) + �qy( ũny) = gh̃(−�zk + �Hk)nx (149)

or

�h( c̃ 2nx − ũ · nũ ) + �qx (̃u · n) = gh̃(−�zk + �Hk)nx (150)

and the third line can be easily reduced to

�h( c̃ 2ny − ũ · nṽ ) + �qy (̃u · n) = gh̃(−�zk + �Hk)ny (151)

If (150) and (151) are multiplied by nx and ny , respectively, and next combined, the expression
for the water depth profile for uniform flows appears

�h(1 − Fr2k) + �zk = �Hk =−dnS f,k (152)

where Frk is the Roe average Froude number in the normal edge direction, Frk = ( ũn)k /̃ck�1.
Equation (152) can be derived directly enforcing

�Dm
k = 0 (153)

or ( �̃
−
� − 	−)mk = 0 for m = 1 and 3. Therefore, the discretization in (153) ensures equilibrium in

steady-state cases correctly for first-order approximation.
When second order is used, equilibrium in steady state can only be satisfied if (135) holds

(�Dm
JI,k = 0 and �Dm

Ii,k = 0). That results in the following conditions over the interpolated edge
variables:

�hJI,k(1 − Fr2JI,k) + �zJI,k + �HJI,k = 0

�hIi,k(1 − Fr2Ii,k) + �zIi,k = 0
(154)

But the construction of interpolating planes for each conserved variable can only satisfy (135) and
(154) in the case of still water where

�hJI,k + �zJI,k = 0

�hIi,k + �zIi,k = 0
(155)
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condition that can only be satisfied if the interpolated variable is 
 = h + z,


(x, y)= 
i,0 + rLi (156)

Following (136) it is necessary to reduce the numerical scheme to first order when

|�hJI,k |>|�hk | (157)

where hI,k = 
I,k − zI,k and hJ,k = 
J,k − z J,k .
When no source terms are present and second order is required it is also impossible to sat-

isfy (154) and a perfect equilibrium or an exact steady-state solution can never be reached unless
in trivial cases.

4.4. Interpretation of the � coefficient

According to (96) and previous section in steady state:

�1k = �3k = � = 1 + S f dn + �z

(1 − Fr2)�h
(158)

or, calling �z′ =−S f dn − �z and �h′ = (1 − Fr2)�h,

� = 1 − �z′

�h′ (159)

This compact formulation is useful to analyse the time step limits following Figure 3.

4.4.1. Bed slope term. When the bed slope term dominates over the friction term and convergence
to equilibrium is analysed, the monotonicity over the solution can be expressed in terms of water
level surface instead of the water depth h,


min
k �
n+1

i �
max
k (160)

This is only feasible considering gradually varied water surface elevation, |�
k |<
i,0, 
 j,0 and that
|�
k |�|�hk |, so the stability region is defined by 0��mk �1.

Instabilities arise in the presence of adverse slope in wetting processes where both �h′ and
�z′ become negative, or in recession surface processes where both become positive, leading to
values of �mk <0. Preservation of positivity over the water depth must be applied in these cases.
The stability region requires computing the time step as in (105) where

0� �<1, �mk <0

� = min{hi,0, h j,0, |�hk |}
|�hk |

(161)

In the special case � = 0 the cell edge acts as a solid wall for any value of time step. As in both
drying/wetting and wetting/drying interfaces our desire is mainly focused on conserving water
volume, the following condition must be applied to the future solution at the cells sharing edge k:

(uini,k)n+1 = (u jni,k)n+1 = 0 (162)
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In the cases where 0<�<1, the reduction of the magnitude of the time step can be avoided by
means of a conservative strategy based on the redistribution of updating fluxes [8], involving the
local time step �th,i , that replaces the � coefficient in (170). That technique proved successful
for first-order approach and can be directly applied to the second-order scheme, as it must be
reduced to first order in the cases where 0��<1. It is worth remarking that, when dealing with
second order, in those cases where strong variations in the discrete water level surface are present,
|�
k |>|�hk |, the numerical scheme must be reduced to first order, otherwise negative values of
water depth can be obtained in the interpolation process.

4.4.2. Bed friction term. Near wetting/drying fronts, characterized by small values of water depth,
the bed friction term may dominate over the bed slope terms. Under this hypothesis, and assuming a
negative gradient in the water depth value in the direction towards the shoreline as in wetting/drying
fronts, �h′<0 and �z′ ∼=−S f dn<0, the region �<0 is met. Again, the preservation of positivity
over the solution is required for the water depth as in the previous case. In the case � = 0 the
cell edge acts as a solid wall for any value of time step. When 0<�<1 numerical instabilities are
avoided by requiring that friction alone is not able to change the sign of the discharge, so the
following conditions are enforced over the unit discharge function hu:

(hu)n+1
i � 0, (hu)ni , (hu)nj = 1,2,3�0

(hu)n+1
i � 0, (hu)ni , (hu)nj = 1,2,3�0

(163)

and similarly over hv. These conditions must be included to determine the maximum allowable
time step. Let us assume without loss of generality the one-dimensional case, where the updated
value can be expressed as

(hu)n+1
i = (hu)ni + (gh̃�H)nk

lk
Ai

�t = (hu)ni −
(
gh̃

n2ũ |̃u|
h̃4/3

dnl

)n

k

�t

Ai
(164)

that can be rewritten as

(hu)n+1
i = (hu)ni

[
1 − ( h̃ũ )nk

(hu)ni

(
gn2 |̃u|
h̃4/3

dnl

)n

k

�t

Ai

]
(165)

The second term on right hand of (165) must be positive to ensure (163). Hence, in general, the
time step �tk , taking into account also condition (126), is limited by

�tk = min

{(
n2 |̃u|
h̃4/3

dnl

Amin,k
g

)−1

,
Amin,k

maxm {̃�m,∗
k |}l

}
k

(166)

It is remarkable that, considering that �z′ ∝ dn the stability region 0���1 can be recovered by
decreasing the size of the cells, as pointed out in Burguete et al. [25]. This option is not always
affordable due to the high computational cost associated. In the case of a pointwise explicit
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discretization the following limit must be imposed:

�t�min

⎧⎨⎩
(
n2|ui |
h4/3i

g

)−1
⎫⎬⎭

i=1,Ncell

(167)

to prevent instabilities. All the limitations related to the friction term can be overcome using a
pointwise implicit discretization [20], although an exact equilibrium among fluxes and friction
source term cannot be achieved in steady state.

5. NUMERICAL RESULTS

5.1. Two-dimensional steady state with variable bed slope and friction

A two-dimensional steady flow test case with analytical solution involving friction is used to study
the behaviour of the numerical schemes in presence of source terms when second order is enforced.
The flow discharge is constant in the entire domain and equal to

qx (x, y)= qy(x, y)= qx = qy (168)

and the steady-state water depth and bed slope analytical functions are

h(x, y)= a + qx x + qy y, z(x, y)= − 1

2g

(q2x + q2y ) + 2gh3

h2
+ 3

7

|qx |n2
√
2

h7/3
(169)

The performance of the schemes are tested using qx = qy = 0.1, a = 0.5 and Manning friction
coefficient n = 0.03 in a squared domain 10× 10m discretized using a Delaunay mesh with
2064 cells. Figure 11(a) displays the computational mesh, (b) a contour map of the exact bed
elevation in meters and (c) a three-dimensional view of the exact water level surface elevation in
meters.

Before analysing the conditions for flow in movement, the special case of still water, u = v = 0
as bed level function (169), is considered, assuming a constant value of water level surface 

equal to zero. Figure 12 shows the solution for the water surface elevation after one time step
using second-order approximation and interpolating the water depth using the MLG technique.
The solutions only becomes equal to the solution for first-order approach if second order is
enforced over the water level surface, as the numerical scheme reduces automatically to first
order.

In the non-trivial case, the steady water level is computed starting from initial condition of
still water, with 
 = 0. Figure 13(a) shows the exact water level surface, the plot of the val-
ues as computed with first-order scheme is shown in Figure 13(b), those from second order
over h, hu, hv using MLG in Figure 13(c), the result from second order over 
, hu, hv us-
ing MLG in Figure 13(d) and those from second order over 
, hu, hv using MLG-Wierse in
Figure 13(e). The solution has been computed for 300 s. No remarkable differences appear be-
tween the solutions computed using first or second order interpolating over 
. Figure 14 shows
the evolution of the L1 error in time and how the most accurate solution is provided using
first order. When applying a second-order approach a perfect equilibrium can never be attained
and a constant error cannot be determined. The MLG-Wierse provides the closest result to
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Figure 11. (a) Computational mesh; (b) contour map of the bed elevation in meters; and (c) three
dimensional-view of the water level surface elevation in meters.

Figure 12. Water level surface with second order over h after one time step using the
MLG technique in the case of still water.

first-order approach with small oscillations in the L1 error function compared with the MLG
technique.

In this case the bed level source term dominates over the friction term that has almost no
influence over the solution. To show the importance of the correct discretization of the source
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Figure 13. Exact water level surface (a) first-order solution (b) second order over
h, hu, hv using MLG (c) second order over 
, hu, hv using MLG (d) second order over


, hu, hv using MLG-Wierse (e) after 300 s.

Figure 14. L1 error in time for first- and second-order approaches.

terms an extremely high value of roughness coefficient is now used, n = 0.3 keeping unchanged
the other values. Figure 15 shows a three-dimensional view of the new water level surface. The
steady-state water level is computed starting from the initial condition of still water. Figure 16
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Figure 15. Three-dimensional view of the water level surface (m).

Figure 16. Exact water level surface (a) with first order (b), second order over 
, hu, hv using MLG
(c) over 
, hu, hv using MLG-Wierse (d) after 200 s.

shows the exact water level surface (a) with first order (b) second order over 
, hu, hv using
MLG (c) and second order over 
, hu, hv using MLG-Wierse (d) after 200 s. Again no remarkable
differences appear among the solutions. Figure 17 shows the evolution of the L1 error in time
and how the most accurate solution is provided using first order. The same conclusions regarding
equilibrium are achieved. In this case no differences between the results for the MLG and the
MLG-Wierse techniques can be noted.
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Figure 17. L1 error in time for first- and second-order approaches.

Figure 18. Bottom level in meters.

5.2. Two-dimensional frictionless steady state with sinusoidal bed slope

This test case is again a frictionless steady flow over variable bed characterized by a uniform
horizontal surface level 
(x, y, t) = 0. The corresponding bed analytical function is

z(x, y)=−h0 + q0
a

sin(a(x − y)) (170)

with the unit discharges varying in space:

qx (x, y)= qy(x, y)= q0 cos(a(x − y)) (171)

The schemes are tested using q0 = 0.05, a = 2�/(
√
2 30) and h0 = 3q0/a. Figure 18 shows the

contour plot of the bottom elevation.
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Figure 19. Water level surface with first order (a), second order over h, hu, hv using MLG (b) and over

, hu, hv using MLG (c) over 
, hu, hv using MLG-Wierse (d) after 300 s.

The boundary conditions imposed at the upstream sides (south and west sides) are the x and y
unit discharges and, at the downstream sides (north and east sides) the water depth, as before. The
same squared domain of the previous test case is discretized using the mesh detailed in Section 5.2.
When second order is used in this test case, the same conclusion about the necessity of computing
the water depth h from the second order extrapolated surface level 
 is derived. Figure 19(a) shows
the solution for first-order approach and Figure 19(b) the distortions in the water surface level
when second order is imposed using the MLG limiter function over h. When the limiter acts over

, accurate results are obtained as Figure 19(c) and (d) shows for the MLG and the MLG-Wierse
techniques, respectively. Figure 20 shows the evolution of the L1 error in time. Again, the most
accurate solution is provided using first order and the MLG-Wierse provides the closest result to
first-order approach.

5.3. Frictionless steady-state hydraulic jump with flat bed

This test case is used to check the behaviour of the solutions in the presence of a discontinuous
flow. A supercritical uniform flow, over flat and frictionless bed, is deflected by a solid wall at an
angle � generating an oblique hydraulic jump as shown in Figure 21 (right).

There is an exact relationship between the water depths upstream the shock, h1, and downstream
of it, h2, the Froude number of the incoming flow normal to the jump, Fr1, and the angle formed
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Figure 20. L1 error in time for first- and second-order approaches.

Figure 21. Oblique hydraulic jump.

Figure 22. Exact water depth (a) with first order (b), second order over h, hu, hv using MLG (c) over
h, hu, hv using MLG-Wierse (d) after 10 s.
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Figure 23. log(L1) error in time for first- and second-order approaches.

Table III. L1 error in h for different mesh refinement.

n = 4052 n = 9069 n = 14 474

L1, first order 1.586 1.130 0.898
L1, MLG 0.698 0.482 0.369
L1, MLG-Wierse 0.960 0.663 0.486

by the jump, �

h2
h1

= 1

2

(√
1 + 8Fr21 sin

2 � − 1

)
(172)

and also an exact relationship that links the deflection angle � and the jump angle �:

tan �= tan �

√
1 + 8Fr21 sin

2 � − 3

2 tan2 � − 1 +
√
1 + 8Fr21 sin

2 �
(173)

The computational domain, Figure 21 (left), is represented by three different meshes divided in
4052, 9069 and 14 474 cells. The steady flow numerical solution is obtained from a constant value of
water depth h1 and velocity v1, after simulating 10 s, enough to converge to steady condition where
a hydraulic jump is produced. In this case, the upstream and downstream values are, respectively,
Fr1 = 2.74, h1 = 1 and Fr2 = 2.74, h2 = 1. The deflexion angle is � = 8.95◦ and the jump angle
is � = 30◦. Figure 22(a) displays the exact solution and (b) the solution obtained for first-order
approach in the most refined mesh. Second order using the MLG technique provides the sharpest
jump (Figure 22(c)) compared with the results for the MLG-Wierse technique (Figure 22(d)), but
the excessive antidiffusive effect of the MLG technique results in the presence of undershoots
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Figure 24. Time step size for the different discretizations of the source term.

Figure 25. Three-dimensional contour plot of the water depth using the upwind explicit dis-
cretization (a), the pointwise discretization (b), the pointwise implicit with CFL= 1 (c) and the

pointwise implicit with CFL= 2 (d) at time t = 40 s.
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Figure 26. Initial free surface and water depth profile for the parabolic basin test.

Figure 27. Time evolution of the water depth at the central point of the basin. The exact
solution is compared with the results computed with the first-order scheme and the spatial

second-order scheme using the MLG limiter.

in the supercritical region. To reveal the difference among first- and second-order approaches,
Figure 23 displays the logarithm of the L1 error in the mesh divided in 14 474 cells. In this
case the second-order solution varies less in time than in the previous cases, but also a perfect
equilibrium can never be attained. Table III shows the L1 error obtained for the different meshes.

5.4. Circular dam break with friction

A circular dam break with friction is next presented in a flat squared domain 2000× 2000m
divided in 32 672 triangular cells, generated by means of a Delaunay mesh solver. The coordinate
origin is located at the centre of the domain, and the initial water depth elevation is given by

h(t = 0) =
{
0.01 if r>800

5 if r�800
(174)
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Figure 28. Three-dimensional plot of the water surface elevation at t = T as computed
with the second order in space scheme.

Figure 29. Water surface elevation at t = 0.95T as computed with the second-order scheme in space and
time. Destructive oscillations start to appear if the scheme is not reduced to first order when |�hJI,k |>|�hk |.

with h in meters and where r , in meters, is the radial distance from the centre of the domain
considering a Manning’s roughness parameter equal to n = 0.04.

Figure 24 displays the time step size for three different discretization techniques of the source
term. It is remarkable that for explicit discretization, upwind and pointwise, the limits in the time
step size in (166) and (167) must be imposed, respectively, otherwise the computation blows up
at approximately t = 5 s. The implicit pointwise discretization does not involve any restrictions
over the time step size, so it is suitable to be combined with the upwind scheme extended to
values of CFL greater than one [9]. Figure 25 displays a three-dimensional view of the water depth
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Figure 30. Water depth at the central point r = 0, exact and computed with first order, MLG, MLG-Wierse.

when using the upwind explicit discretization (a), the pointwise discretization (b), the pointwise
implicit with CFL= 1 (c) and the pointwise implicit with CFL= 2 (d) at time t = 40 s. The less
diffusive solution is provided using the pointwise implicit discretization with CFL= 2, requiring
the minimum computational effort.

5.5. Long wave resonance in a circular parabolic frictionless basin

The analytical solution of a long wave resonating in a circular parabolic basin was presented by
Thacker [26] for the shallow water equations, where the free surface displacement is given by

(r, t) = 0

(
(1 − A2)1/2

1 − A cos�t
− 1 − r2

a2

{
1 − A2

(1 − A cos�t)2
− 1

})
(175)
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Figure 31. Water depth at the central point r = 1200, exact and computed
with first order, MLG, MLG-Wierse.

and the basin shape is given as

z(r, t) =−0

(
1 − r2

a2

)
(176)

with A= (a4 − r40 )(a
4 + r40 ) and �= a−1

√
8g0, where 0 is the centre point water depth, r is the

distance from the centre point, a is the radial distance from the centre point to the zero elevation
on the shoreline and r0 is the distance from the centre point to the point where the water depth
is initially nil. Those values are represented in Figure 26. No bottom friction is considered in this
case. The numerical values used for this test are 0 = 20.0m, r0 = 1200m, a = 1500m. The domain
is divided in triangular cells with l = 25m generated using the discretization shown in Figure 5(b).
This test case illustrates the wetting/drying fronts and the generation of dry regions from wet areas.
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Figure 32. Three-dimensional view for the exact water level surface (a) at 4T , using first-order approxi-
mation (b), second order with MLG (c) and second order with MLG-Wierse at 4T (d).

In particular, the advance of the wetting/drying front is produced in the first half period, during the
wave expansion, while during the wave contraction both wetting/drying fronts and drying process
are present. The numerical treatment at the wet/dry fronts follows the methodology described in
Murillo et al. [8]. A strategy of conservative redistribution of the cell-updating information has
been applied in this kind of problems to avoid the required extreme reduction of the time step [8].
Figure 27 shows the time evolution of the water depth at the central point of the basin where the
exact solution is compared with the results computed with the first-order scheme and the spatial
second-order scheme using the MLG limiter in order to display the stable but oscillatory solution
provided by the latter. Figure 28 is a three-dimensional plot of the water surface elevation at t = T
as computed with the second order in space scheme to emphasize the bad quality of the solutions
provided by this approach in some cases. Figure 29 is a plot of the water surface elevation at
t = 0.95T as computed with the second-order scheme in space and time. Even though this scheme
is able to cure the oscillations of the second order in space method, destructive oscillations start
to appear if the scheme is not reduced to first order when |�hJI,k |>|�hk |.
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Figure 33. Water surface elevation for first and second order (MLG-Wierse).

Figure 30 (top) displays the water depth at the central point (r = 0) for first- and second-order
approximations using the MLG and the MLG-Wierse techniques while Figure 30 (bottom) shows
the error computed as the difference between the exact and the computed solutions, showing
how the MLG-Wierse technique provides the most accurate results. In Figure 31 (top) the water
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depth at r0 for first- and second-order approximations using the MLG and the MLG-Wierse
techniques is presented, whereas Figure 31 (bottom) shows the error as defined in the previous
figure, showing how the MLG-Wierse technique provides the most accurate results. In this case
the MLG technique is remarkably less accurate than first-order approach when the water depth
recovers the initial position.

Figure 32(a) shows a three-dimensional view for the exact water level surface at 4T , using first-
order approximation (b), second order with MLG (c) and second order with MLG-Wierse showing
how in all cases the numerical model conserves perfectly the symmetrical shape of the initial water
distribution. The differences between first- and second-order approximation (MLG-Wierse) can be
observed for the times T, 2T, 3T and 4T in Figure 33.

6. CONCLUSIONS

A general formulation of finite volume upwind schemes on triangular grids has been presented in
order to study the properties of first order, spatial second-order and spatial and temporal second-
order approximations. The main focus of the work has been the relative performance of these
schemes as applied to conservation laws with source terms and the influence of the latter on the
numerical stability conditions.

Spatial second-order accuracy has been built using MLG and MLG-Wierse limited cell gradient
methods (MUSCL). The second has proved the most efficient in all cases but especially in homo-
geneous problems such as the linear advection and the oblique hydraulic jump test cases. Second
order in time and space accuracy has been implemented by means of a two-step MUSCL-Hancock
scheme. In cases of transient flow, the MUSCL-Hancock scheme is not only more accurate, but
able to eliminate oscillatory solutions that otherwise appear. This has also been shown in the linear
advection test case.

The presence of source terms in the equations, both in scalar case and for systems of equations,
has been taken into account in order to derive a systematic series of restrictions over the time step
compatible with numerical stability that are reduced to the CFL condition in the homogeneous
case. This analysis helps to understand the form in which the source terms get involved in the
time step restrictions and identifies the cases in which the time step must be further reduced due
to the source terms.

The careful formulation of the second-order spatial representation in presence of source terms
has led to a twofold conclusion: first, that an exact balance at steady state can only be achieved
if the method reduces automatically to first order and, second, that linear reconstruction has to be
made over a secondary variable that combines the conserved variables and the source terms. This
has been shown in the inviscid Burgers’ equation with source term test case.

The same can be concluded when solving the shallow water system of equations with source
terms. In this particular case, it has been shown that the only form to achieve a perfect discrete
balance in the still water steady state when using a second-order scheme is to replace water depth
by water surface level in the interpolated set of variables. In general, it cannot be concluded that
second-order approximations lead to better quality steady-state solutions.

The restrictions in time step associated specifically to the friction source terms in the shal-
low water equations have been studied separately. It can be concluded that the unified upwind
discretization of these terms, although accurate and conservative, is overly restrictive and can
lead to excessively small time steps in transient calculations. For these cases, the option of
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a pointwise implicit discretization of the friction source terms has proved to be the most efficient
strategy.

In complex cases of transient shallow water flow with source terms and wet/dry fronts there
are several reasons that can force the reduction of the time step size in order to preserve numerical
stability and monotonicity. A strategy of conservative redistribution of the cell-updating information
has been applied in this kind of problems to avoid the required extreme reduction of the time step.
The test case of long wave resonance in a parabolic basin has been useful to see that, even
though second-order schemes are not able to produce a better quality steady-state solution, they
are superior in transient calculations. At the same time, the proposed conservative redistribution
strategies have been proved valid and useful.

APPENDIX A: CONSTRUCTION OF NON-OSCILLATORY
PIECEWISE LINEAR L FUNCTIONS

In Batten et al. [17] a new algorithm, the maximum limited gradient (MLG) approach, was
presented to define reconstruction second order in space functions. It was based on the limited
central difference (LCD) approach and the compressive limiter of Durlofsky. The LCD approach
generates a reconstruction function formulated with a matrix L1 computed at a cell i using the
information stored in the three immediate neighbour cells, L1 = ∇(123). In order to enforce
condition (45) L1 is limited by

L1 = �L1, 0�� �1 (A1)

where the coefficient � is a damping factor maximized to avoid overshoots or undershoots at the
edge mid-points, with the following rule:

� =

⎧⎪⎪⎨⎪⎪⎩
(umax

k − ui,0)/�uJI,k if uI,k>umax
k

(umin
k − ui,0)/�uJI,k if uI,k<umin

k

1 otherwise

(A2)

for k = 1, 2, 3. In the Durlofsky technique [27] three different gradient planes, L2 = ∇(12i),
L3 = ∇(13i), L4 =∇(23i) participate. The compressive limiter suggested by Durlofsky et al. [27]
selects the gradient matrix with maximum |Ls | that fulfils (45), otherwise first order is imposed.
The MLG algorithm [17] is a combination of the two previous slope limiter functions, where every
gradient operator Ls (s = 1, 4) is limited according to (A2) and the Ls for which |Ls | is maximum
is finally used.

This method is extended including an extra limiter function presented by Wierse [28] and will
be referred to as the MLG-Wierse limiter. Despite being more restrictive, this algorithm proves
to be the best option, as results in an optimum evaluation of the updating pointwise part. The
algorithm is:

(i) Construction of the operators Ls (s = 1, 4).
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(ii) For each Ls , for k = 1, 2, 3 redefine the value of �dsIi,k = ri,kLs as:

�dsIi,k =
{

�dsIi,k if �dsIi,k · �dsk> 0

0 otherwise
(A3)

(a) If �dsIi,k = 0 only for one k (denoted by k1) and �dsIi,k2 · � dsIi,k3<0

�dsIi,k2 = sign(�dsIi,k2) · minvalue

�dsIi,k3 = sign(�dsIi,k3) · minvalue
(A4)

where minvalue= min(|�dsIi,k2 |, |�dsIi,k3 |), and reconstruct Ls .
(b) If �dsIi,k = 0 only for one k (denoted by k1) and �dsIi,k2 · �dsIi,k3�0 set Ls = 0.
(c) If �dsIi,k = 0 for two or more k’s set Ls =0.

(iii) Limit each Ls as in (A1).
(iv) Selection of the Ls for which |Ls | is maximum.
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